网站首页 > 数据库> 文章内容

大数据时代数据库-云HBase架构生态实践

※发布时间:2018-6-12 7:11:59   ※发布作者:habao   ※出自何处: 

  2018第九届中国数据库技术大会,阿里云高级技术专家、架构师封神(曹龙)带来题为大数据时代数据库-云HBase架构&生态&实践的。主要内容有三个方面:首先介绍了业务挑战带来的架构演进,其次分析了ApsaraDB HBase及生态,最后分享了大数据数据库的实际案例。

  现如今大量的中小型公司并没有大规模的数据,如果一家公司的数据量超过100T,且能通过数据产生新的价值,基本可以说是大数据公司了 。起初,一个创业公司的基本思就是首先架构一个或者几个ECS,后面加入MySQL,如果有图片需求还可加入磁盘,该架构的基本能力包括事务、存储、索引和计算力。随着公司的慢慢发展,数据量在不断地增大,其通过MySQL及磁盘基本无法满足需求,只有分布式化。 这个时候MySQL变成了HBase,检索变成了Solr/ES,再ECS提供的计算力变成了Spark。但这也会面临存储量大且存储成本高等问题。

  另外一个趋势就结构化的数据越来越多,数据结构的模式不仅仅是SQL,时序、时空、graph模式也越来越多,需要一些新的存储结构或新的算法去解决这类问题,也意味着所需要做的工程量就会相对较高。

  对于数据处理大致可归类为四个方面,分别是复杂性、灵活性、延迟读,写和分布式,其中分布式肯定是不可少的,一旦缺少分布式就无决大规模问题 。灵活性的意思是业务可以任意改变的;复杂性就是运行一条SQL能够访问多少数据或者说SQL是否复杂;延迟也可分为读与写的延迟。hadoop& Spark可以解决计算复杂性和灵活性,但是解决不了延迟的问题;HBase&分布式索引、分布式数据库可以解决灵活性与延迟的问题,但由于它没有很多计算节点,所以解决不了计算复杂性的问题。Kylin(满足读延迟)在计算复杂性与延迟之间找了一个平衡点,这个平衡点就是怎样快速出报表,但对于这个结果的输入时间我们并不关心,对于大部分的报表类的需求就是这样的。每个引擎都是一定的侧重,没有银弹!

  我们也不能解决所有的问题,我们只是解决其中大部分的问题。如何找到一个在工程上能够解决大部分问题的方案至关重要,应对办法:

  第三层:分布式安全隔离保障层QOS,如果我们做存储计算分离,就意味着底层的三个集群需要布三套,这样每个集群就会有几十台甚至几百台的节点,此时存储力是由大家来均摊的,这就意味着分布式安全隔离保障层要做好隔离性,引入QOS就意味着会增加延迟,此时会引入一些新的硬件(比如RDMA)去尽可能的减小延迟。

  第五层:我们提供了两个组件,分布式Region-HBase与分布式检索-Solr,在研究分布索引的时候发现单机索引是相对简单的,我们提供针对二级索引采取内置的分布式Region的分布式架构,针对全文索引采取外置Solr分布式索引方案

  分级存储:SSD与SATA的价格相差很多,在冷数据上,我们直接采取冷存储的方式 ,可以节约500%的成本

  高压缩比:在分级存储上有一个较好的压缩,尤其是在冷数据,我们可以提高压缩比例,另外分布式文件系统可以采取EC进一步降低存储成本,节约100%的成本

  假设在有三个机房可用区A、B和C,我们会在可用区A中部署一个热的存储集群,在整体区域部一个冷的存储集群,实际上有几个可用区就可以有几个热集群,主要是保障延迟的;冷集群对延迟相对不,可以地域单独部署,只要交换机满足冷集群所需的带宽即可。这样的好处是三个区共享一个冷集群,就意味着可以共享库存。

  我们提供两个版本,一是单节点版,其特点是给开发测试用或者可用性不高,数据量不大的场景。二是集群版本其特点是高至5000w QPS,多达10P存储与高可靠低延迟等。

   数据可靠性:99.99999999%:之所以可靠性可以达到如此之高,其核心的原因就是存储集群是单独部署的,其会根据机架等进行副本放置优化

  备份分为全量备份HFile与 增量量备份HLog;恢复分为HLog为HFile和BulkLoad加载。阿里云集团迄今为止已经有一万两千多台的HBase,大部分都是主备集群的,在云上由于客户成本的原因,大部分不选择主备,所以需要对数据进行备份。其难点在于备份需要引入计算资源,我们需要引入弹性的计算资源来处理备份的相关计算任务

  我们在内部研究如何通FPGA对Compaction进行加速,这会使得集群运行比较平缓,特别是对计算资源少,存储量大的情况下,可以通过离线的作业处理Compaction。

  客户还是比较喜欢用SQL的,Phoenix会支持SQL及二级索引,在超过1T的数据量的情况下,对事务的需求就很少(所以我们并没有支持事务);二级索引是通过再新建一张HBase表来实现的。在命中索引的情况下,万亿级别的访问基本在毫秒级别,但由于Phoenix聚合点在一个节点,所以不能做Shuffle类似的事情,同时也就不能处理复杂的计算,所以任何说我是HTAP架构的,如果不能做Shuffle,就基本不能做复杂的计算。

  直接访问HFile,直接访问存储不经过计算,大批量量访问性能最好,需要snapshot对齐数据。

  TSD没有状态,可以动态加减节点,并按照时序数据的特点设计表结构,其内置针对浮点的高压缩比的算法,我们云上专业版的HiTSDB增加倒排等能力,并能够针对时序增加插值、降精度等优化。

  以下简单介绍几个客户的案例,目前已经在云上ApsaraDB HBase运行,数据量基本在10T以上:

  这是一个车联网的客户,有100万车,每辆车每10秒上传一次,每次1KB,这样一年就有300T数据,六个月以上是数据低频访问,所以他要做分级存储,把冷数据放到低介质上

  这是一个大数据控公司,它大约有200T+的数据量,将HBase数据 (在线实时大数据存储)作为主数据库,先用HBase做算法训练,再用HBase SQL出报表,另外做了一套ECS进行实时查以便与客户之间进行数据交换。

  社交会有大量的推荐,所以SLA要求高达99.99,并采用双集群保障,单集群读写高峰QPS 可以达到1000w+,数据量在30T左右。

  这是一个金融公司,它有10000亿以上的交易数据,目前用多个二级索引支持毫秒级别的查询,数据量在100T左右

  先离线建好Cube再把数据同步到HBase中,实时数据通过Blink对接进行更新,数据量在可达20T左右。

  封神:线年加入阿里,现任阿里云高级技术专家、架构师,专注于大数据分布式计算、数据库、存储领域,先后研发上万台Hadoop、ODPS集群,负责阿里YARN、Spark及自主研发内存计算引擎,目前为广大公共云用户提供专业的云HBase数据库及计算服务。

  本文由悠悠游戏 (www.youycu456.com)整理发布

相关阅读
  • 没有资料
重庆学习网zslpsh,0755深圳房产人才招聘网,拾年网90后,anedc股票,最新电影下载淘娱淘乐,重庆中学生网高考,重庆中学生网高考,学习重庆方言网,重庆中学生学习方法,重庆俗语网,中学生网zslpsh,0755深圳交友网,重庆初中生,贵州重庆方言网,025新闻网,西南重庆方言歌曲,025南京交友网,重庆农家乐美女,观赏蟹种类zadull,云南重庆方言网,重庆中学学习网,028成都交友网,推广taoyutaol,西南四川方言网,观赏龟论坛zadull,四川重庆方言网,022天津交友网,重庆中学生网家长,鹦鹉鱼zadull,重庆俗语,电影淘娱淘乐,taoyutaole娱乐,华夏视讯网,0755深圳旅游招聘,昆明重庆方言网,淘娱淘乐影视,www.00game.net,观赏鱼zadul,重庆高考zslpsh,重庆中学生网高考,027房产招聘网,坝坝舞wagcw,西南重庆方言网,贵州重庆方言网,重庆言子儿网,热带鱼zadull,重庆高考zslpsh,0755深圳旅游招聘网,淘娱淘乐影视网,0571.361.cm,重庆方言学习网,028成都新闻,异形观赏鱼种类,影视网淘娱淘乐,最新电影下载淘娱淘乐,0773桂林论坛,拾年网80后动画片,观赏蟹论坛zadull,观赏龟繁殖教程,重庆一中zslpsh,重庆俗语网,广场舞wagcw,观赏虾的种类zadull,观赏鱼观赏虾观赏龟,西南方言网,观赏鱼之家论坛zadull,战争前线辅助00game,西南重庆方言小说,重庆中小学zslpsh,推广taoyutaol,战争前线论坛00game,0871交友网,025南京新闻网,重庆言子儿网站,娱乐taoyutaole,022天津交友网,025新闻网,重庆中学生网学习,022天津交友网,重庆方言歌网,www.120.cm健康网,anedc股票,重庆初中生